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Abstract
Service-based 5G core architecture is designed to take advantages of network function virtualization and software-defined
networking. In addition to the control and data plane separation, the service-based 5G core decouples the computing
and storage resources which separates the mobile functions into two categories: “stateless” control functions and state
management functions. Such new features improve 5G core network in terms of independent scalability and fast failure
recovery. In geo-distributed cloud infrastructure-based 5G core networks, the “stateless” control functions can be deployed
to all cloud centers close to access networks to reduce latency and traffic load burden. However, we can not deploy state
management functions to all cloud centers which results in the high state transfer cost. In addition, we can not use only one
state management function for entire network which results in high traffic load burden. Therefore, the placement of state
management functions involves different conflicting design objectives which requires a new model to optimally place these
functions. In this paper, we propose a multi-objective model which can achieve the balance between state transfer cost and
traffic load burden on state management functions. We first solve our model using ε − constraint approach which tries to
optimize one objective while keeping another under threshold. Second, we propose an adaptive solution based on adaptive
weighted sum approach to find a set of Pareto optimal solutions for our multi-objective model. Simulation results show that
our proposed solution offers better balance between two design objectives compared to other solutions.

Keywords Service-based 5G core network · Unstructured data storage function · Stateless function ·
Network function virtualization

1 Introduction

Currently, three enabling technologies consisting of cloud
computing, software-defined networking (SDN), and net-
work function virtualization (NFV) have driven the evo-
lution of mobile core network architecture. Looking back
to history, when the cloud computing arrived, 4G evolved
packet core (EPC) evolved from the dedicated hardware-
based deployment to fully virtualized on cloud infrastruc-
ture(vEPC). When SDN [13, 24] came into play, the mobile
core architecture is redesigned to take advantages of con-
trol plane (CP) and data plane (DP) separation concept.
The control plane is implemented on the top of a central-
ized controller which can configure the data plane consist-
ing of extended switches to process the encapsulation and
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decapsulation of mobile traffic. Such SDN-based mobile
network enables efficient network control, operation, and
programmable network. NFV [1] tries to deploy the mobile
core functions as virtual network functions (VNF) on cloud
infrastructure which makes the mobile core more scal-
able and reduces capital cost. NFV introduces a centralized
management and orchestration framework [2] which highly
automates the service deployment and management, as well
as shortens the new service delivery time.

In order to take the advantages of SDN, 3GPP stan-
dardization development organization (SDO) redesigned the
current 4G core architecture to the control user plane sep-
aration architecture (i.e. CUPS) [3]. However, in order
to take fully advantages of cloud environment and NFV,
3GPP mobile network needs to be evolved one step more
to service-based 5G architecture. The service-based 5G
architecture [4, 5] redesigns the mobile network functions
into more fine-grained network functions and microservices
which are communicated with each other via application
programmable interfaces (APIs). This new feature increases
the reusability of mobile network functions which can be
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orchestrated and shared among different network slices
[18]. Beside control and data plane separation, the service-
based 5G architecture introduces another layer of separation
which decouples between computing and storage resources.
The control plane functions are designed as “stateless” func-
tions which can communicate with the separate state man-
agement functions (StateMF) for their internal processing
state. These state management functions can store not just
preconfigured data (e.g. subscriber profile and policy), but
also processing state (e.g. UE contexts, forwarding context
for ongoing sessions). These new design concepts will make
the 5G mobile core functions more independently scalable
and quickly recoverable. In other words, the service-based
architecture makes 5G core more cloud-native and take fully
advantages of NFV [25].

Two challenges should be addressed towards 5G core net-
work deployment. The first challenge is to define service
APIs among 5G core network functions, and the second
challenge is to define new optimization models for plan-
ning the service-based core network architecture over geo-
distributed cloud infrastructure. In service-based 5G core
networks, “stateless” control functions and user plane func-
tions can be deployed to all cloud centers close to access
networks to reduce latency and traffic load burden. How-
ever, compare to “stateless” functions, the placement of
state management functions is required to consider a new
design goal specific to state management functions (i.e.
minimize state transfer cost). This cost is caused when
the UE handovers between two service areas which are
managed by two different sets of state management func-
tions. This design goal tries to deploy as least as possi-
ble the number of state management functions for whole
network which can result in the high latency and heavy
traffic load burden on each state management function.
Therefore, the second design goal is to reduce traffic load
burden on each state management function. This second
goal tries to deploy as many as possible the state manage-
ment functions on all cloud centers to fairly distribute traffic
load. The problem is to find an appropriate model and opti-
mal solution in terms of both design goals. In addition, the
model should incorporate new feature on traffic model of
5G mobile users (i.e. 5G mobile users can request as many
sessions as they want). In order to solve this problem, we
propose a multi-objective optimization model that aims at
finding optimal placement of state management functions
over geo-distributed cloud infrastructure. We first solve our
model by converting it into single objective models and use
ε−constraint method which tries to optimize one objective
while keeping another under threshold. Second, we pro-
pose an adaptive Pareto optimal solution (i.e., APO), which
is based on the adaptive weighted sum approach to find a
set of Pareto optimal solutions. This adaptive approach is
designed to perform more refinements which can help to

obtain more Pareto optimal solutions. These Pareto optimal
solutions can be selected to achieve the tradeoff between
state transfer cost and traffic load burden. Therefore, this
adaptive approach results in a better balance between two
design goals compared to normal multi-objective model
(i.e., with same weight factors) and single objective mod-
els. By varying handover frequency, session request rate,
and user density, we evaluate and prove that our proposed
adaptive approach can provide the most optimal solutions in
terms of traffic load, state transfer cost, and required number
of StateMF sets.

The remainder of our paper is structured as follows.
Section 2 presents about the background and related works.
Section 3, the placement problem is formulated. In Section 4,
mathematical formulation and solutions are presented.
Sections 5, 6 shows the numerical results and conclusion.

2 Background and related works

The 5G network structure consists of two main parts which
are radio access networks (RAN) and core network (CN).
First, we give the readers some background related to
research topics in radio parts. Second, we present different
approaches for core network architecture based on SDN and
NFV. Third, modeling and optimization algorithms for these
SDN and NFV-based mobile core networks are presented.

2.1 5G next generation radio networks

In term of resource management in 5G radio networks,
the authors in [19] tackled the resource allocation problem
while keeping the efficient energy consumption. The
authors in [31], an optimization framework dealing with
caching and resource sharing mechanisms to efficiently
deliver contents to mobile users was proposed. In term
of security, the authors in [20] proposed relay selection
approaches to enhance security. In terms of specific use
cases, the authors in [17] proposed a multi-radio 5G
archiecture for connected and autonomus vehicles use
case. For device-to-device (D2D) use case, the authors
in [32] proposed a joint encoding rate allocation and
description distribution optimization to enhance video
streaming performance over D2D communication in 5G
networks.

2.2 SDN and NFV-basedmobile core network
and evolution to service-based architecture

In academia, with regard to SDN, the authors in Softcell [34],
MobileFlow [26] proposed to deploy mobile network func-
tions on the top of SDN controllers and use Openflow switches
for the data traffic forwarding. In [11], authors discussed
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security issues for software-defined mobile networks. In [27],
authors presented a testbed implementation of software-
defined architecture for managing and monitoring wireless
networks. In our previous work, we proposed a SDN-based
architecture to support multicast and broadcast services in
mobile core network [12]. Considering NFV, the authors in
[6] presented a fully virtualized mobile core architecture over
cloud infrastructure. In [15], software-as-a-service approach
is presented for virtual mobile core. For more background
about SDN and NFV-based mobile core network, interested
readers can refer two comprehensive surveys [21, 22]. For
standardization activities, the 3GPP SDO also takes advan-
tages of SDN concept by introducing the CUPS architecture
[3] which focuses on the separation of control and data plane
of mobile gateways (i.e. S-GW and P-GW).

However, the current CUPS architecture is not flexible
enough to leverage the strengths of NFV. As a result, the
3GPP 5G mobile core network evolves to service-based
architecture [4, 5]. The architecture of service-based 5G
mobile core is shown in Fig. 1. Three are three layers in this
architecture: state management layer, control layer, and data
forwarding layer. State management layer includes state
management functions, such as network repository func-
tion (NRF), unstructured data storage function (UDSF), user
data repository (UDR). These state management functions
store both preconfigured data (e.g. UDR stores subscriber
and policy data) to ongoing session-specific state informa-
tion (e.g. UDSF stores UE context, forwarding state, and
session context). The control layer includes “stateless” con-
trol plane functions, such as authentication server function
(AUSF), access mobility function (AMF), session manage-
ment function (SMF), policy charging function (PCF). The
data forwarding layer includes user plane functions (UPF).
In our model, we focus on the placement problem of the
state management functions.

2.3 Placement problems of mobile core network
functions

Along with the evolution of mobile core network, different
optimization models have been developed for optimally

placing mobile network functions. These models could be
classified into two areas: (a) placement of control and
data plane (i.e. controllers and switches) in the SDN-based
architecture and (b) placement of virtual mobile functions
in the NFV-based architecture.

The placement problems of SDN controllers and switches
in SDN-based architecture have been introduced in [16]
which proposed a heuristic algorithm considering control
plane latency and resilience aspects. In [23], the authors
proposed a controller placement algorithm considering both
control latency and controller load. In [8], four deployment
options for S-GW and P-GW which are decomposed into
control and user plane functions are considered. The authors
tried to optimize transport network load against data plane
delay and number of potential data centers.

For the placement of virtual mobile functions in the NFV-
based architecture, in [28], authors proposed an optimal
placement solution for virtual core gateways to cope with
the growth of traffic in case of large crow events. In [29], the
authors proposed a VNF placement solution for creating a
Serving-Gateway (S-GW) over federated clouds so that the
S-GW relocation frequency is minimized. In [7], the authors
considered application type and service requirements as
metrics for creating VNF instances of Packet-Gateway (P-
GW) and introduced three heuristic solutions to deal with
the problem. In [30], the authors formulated and solved
a multi-objective optimization problem which optimizes
packet delivery path and S-GW relocation for optimally
placing VNF instances of S-GW and P-GW. Three solutions
based on game theory were proposed and evaluated with
mobility feature and traffic pattern. In [10], an optimization
model for link and node capacity has been proposed for
placing the virtual mobile core functions. In [9], authors
considered jointly both SDN and NFV by taking into
account two objective functions which are network load cost
and data center resources cost. Their optimization models
included the requirements for both control and data plane
latency as well as the number of data centers.

However, none of existing related works on modeling
and optimizing the placement of mobile network functions
covered the multi-objective model between state transfer

Fig. 1 Service-based 5G mobile
network architecture
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Fig. 2 Deployment architecture
for service-based 5G mobile
network

cost and traffic load burden, as well as new feature on traffic
model of 5G mobile users to find the optimal locations
for state management functions over geo-distributed cloud
infrastructure.

3 Problem formulation

In this section, we present the deployment architecture and
placement problem of state management functions over
a federated cloud infrastructure. As shown in Fig. 2, we
assume that the mobile network operator owns a number
of cloud centers (namely a federated cloud infrastructure)
which could be edge clouds or core clouds distributed over
different geographical locations. Each cloud location can
host one or several stateless CP and DP functions which
are used to serve a predefined region of 5G RAN nodes
via N2 and N3 interfaces, namely service area. These CP
and DP functions can be scaled in or out depending on the
UE density and traffic amount to be carried out over the
corresponding service area. Each service area is designated
to connect to the set of CP and DP functions on the corre-
sponding cloud center. Each set of CP functions is desig-
nated to use one set of state management functions(StateMF
set). Our problem is to determine the number of StateMF
sets needed to deploy and their optimal locations over cloud
infrastructure. The simplified procedures for initial registra-
tion, handover, and new PDU session request is depicted in

Fig. 3. In every operation of mobile users, the mobile users
(i.e. UE) always have to access to a StateMF set. Based
on our observation, when UE performs handover from pre-
vious radio access node (P-RAN) in one service area to
next radio access node (N-RAN) in another service area,
if two service areas are managed by two different StateMF
sets, the state transfer occurs. The state information (e.g.
UE context, forwarding context) required to maintain the
connection session between UE and network has to be trans-
ferred to current set of serving StateMFs as depicted in
Fig. 3. This state transfer results in high handover latency
and signaling overhead and should be avoided. Therefore,
the first goal in placing these StateMFs is to minimize as
much as possible the state transfer among different StateMF
sets. In order to achieve this objective, we need to reduce
the number of StateMF sets and try to push traffic load
to one specific StateMF set. However, this approach will
create traffic load burden on StateMFs on one cloud cen-
ter. Therefore, the second goal in placing these StateMFs
is to minimize the traffic load going to each StateMF sets
on each cloud center. However, in order to minimize the
traffic load, we need to deploy more StateMF sets and
balance the traffic load to the StateMF sets on different
cloud centers. This leads to the increment of state trans-
fer when the UE moves among service areas. Therefore,
we need to solve multi-objective optimization problem to
find the trade-off solution between traffic load and state
transfer.
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Fig. 3 Simplified procedures for service-based 5G network

4 Solution description

We make assumptions that the network operator possesses
M cloud centers and M corresponding service areas
(denoted as Si). Let h(i, j) denote the handover frequency
between areas i and j . Let ni denote the average number
of UEs and ui denote the average session request rate
generated by each UE in the service area Si . For simplicity,
we assume that Lsig denotes the traffic load going to the
StateMF set on one cloud center due to procedures such as
registration and handover. We denote Lsession as the traffic
load going to one StateMF set when the UE requests a
Protocol Data Unit (PDU) session. We denote β as the cost

for one state transfer. We define our decision variables as
two matrices:X and Y . If two service areas Si and Sj use the
same StateMF set, X(i, j) = 1, otherwise X(i, j) = 0. If Si

is controlled by StateMFs on the cloud center t , Y (i, t) = 1,
otherwise Y (i, t) = 0. Our placement problem is formulated
as the following integer linear program (Table 1):

Our two main goals are: (i) optimize the state transfer
cost among sets of StateMFs which are shared among
different service areas (ii) optimize the traffic load going to
each StateMF set deployed on each cloud center. The traffic
usage model of mobile users in service-based 5G network
is different from that in 4G network. In service-based 5G
network, the UE can request multiple PDU sessions to

Table 1 State management
function cluster placement Notation Description

X(i, j) Equal 1 if two service areas use the same StateMF set

Y (i, t) Equal 1 if service are i controlled by StateMF on cloud center t

M Number of cloud centers and service areas

h(i, j) Handover frequency between areas i and j

ni Average number of UEs in service area i

ui Average number of session requests by each UE in service area i

Lsig Traffic load going to the StateMF set due to registration procedure

Lsession Traffic load going to the StateMF when UE requests a PDU session

β Unit cost for state transfer
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multiple data networks at the same time. Therefore, the
session request rate of UEs also affects the traffic load on
the StateMFs.

Minimize
∑

i∈M

∑

j∈M

βh(i, j)(1 − X(i, j)) (1)

Minimize ∀t ∈ M :
∑

i∈M

Y(i, t)ni(Lsig + uiLsession) (2)

Meanwhile, the constraints for linear programming are
defined as followings:

1) Constraint guarantees that the matrix X(i, j) is
symmetric

∀i ∈ M, ∀j ∈ M : X(i, j) = X(j, i) (3)

2) Constraint guarantees that the matries X and Y are
binary

∀i ∈ M, ∀j ∈ M : X(i, j) ∈ [0, 1] (4)

∀i ∈ M, ∀t ∈ M : Y (i, t) ∈ [0, 1] (5)

3) Constraint guarantees that if X(i, j) = 0, two service
areas shouldn’t use the same StateMF set on one cloud
center

∀i ∈ M, ∀j ∈ M, ∀t ∈ M : Y (i, t)+Y (j, t) ≤ 1+X(i, j)

(6)

4) Constraint guarantees that one service area is at least
connected to one cloud center

∀i ∈ M :
∑

t∈M

Y(i, t) = 1 (7)

5) Constraint guarantees that if X(i, j) = 1, two service
areas should use the same StateMF set on one cloud
center

∀i ∈ M, ∀j ∈ M, ∀t ∈ M : |Y (i, t)−Y (j, t)| ≤ 1−X(i, j)

(8)

6) Constraint guarantees that the StateMFs should be
deployed in redundancy to ensure the availability

∑

t∈M

∑

i∈M

(1 − X(i, j)) ≥ 1 (9)

Here, to solve the multi-objective optimization problem,
we first present two simple solutions which try to convert

the multi-objective problem into single objective problem
and solve them using linear programing solvers. Next, we
present our adaptive multi-objective approach to find Pareto
optimal solutions which can achieve the balance between
two design objectives.

4.1 Optimize state transfer cost (OST)

In this solution, the ε − constraint approach is used to
minimize the state transfer cost among StateMF sets. This
approach will fix the upper boundary for one objective
function and try to optimize the another. Here, we denote
T raff icLoadmax as the maximum traffic load on the
StateMFs on one cloud center. The optimization model
which targets at optimizing the state transfer cost among
StateMF sets can be formulated as the following integer
linear program.

Minimize F(X, Y ) =
∑

i∈M

∑

j∈M

βh(i, j)(1 − X(i, j)) (10)

subjectto

∀i ∈ M, ∀j ∈ M : X(i, j) = X(j, i) (11)

∀i ∈ M, ∀j ∈ M : X(i, j) ∈ [0, 1] (12)

∀i ∈ M, ∀t ∈ M : Y (i, t) ∈ [0, 1] (13)

∀i ∈ M, ∀j ∈ M,

∀t ∈ M : Y (i, t) + Y (j, t) ≤ 1 + X(i, j) (14)

∀i ∈ M :
∑

t∈M

Y(i, t) = 1 (15)

∀i ∈ M, ∀j ∈ M,

∀t ∈ M : |Y (i, t) − Y (j, t)| ≤ 1 − X(i, j) (16)∑

i∈M

∑

j∈M

(1 − X(i, j)) ≥ 1 (17)

∀t ∈ M :
∑

i∈M

Y(i, t)ni(Lsig + uiLsession)

< T raff icLoadmax (18)

where T raff icLoadmax represents the maximum load
supported by one StateMF set deployed on one cloud
center. Constraint (18) allows to maintain the acceptable
load on one StateMF set which could be fixed by network
operator.

4.2 Optimize traffic load (OTL)

In the second solution, we also use ε−constraint approach.
We target at minimizing the traffic load going to one
StateMF set on one cloud center while keeping the state
transfer cost under an acceptable threshold. We denote that
StateT ransf erCostmax as the maximum state transfer cost
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in whole mobile network. We formulate the same integer
linear program as previous model.

Minimize ∀t ∈ M : G(X, Y )

=
∑

i∈M

Y(i, t)ni(Lsig + uiLsession) (19)

subjectto

∀i ∈ M, ∀j ∈ M : X(i, j) = X(j, i) (20)

∀i ∈ M, ∀j ∈ M : X(i, j) ∈ [0, 1] (21)

∀i ∈ M, ∀t ∈ M : Y (i, t) ∈ [0, 1] (22)

∀i ∈ M, ∀j ∈ M,

∀t ∈ M : Y (i, t)+Y (j, t) ≤ 1+X(i, j) (23)

∀i ∈ M :
∑

t∈M

Y(i, t) = 1 (24)

∀i ∈ M, ∀j ∈ M,

∀t ∈ M : |Y (i, t)−Y (j, t)|≤1−X(i, j) (25)∑

i∈M

∑

j∈M

(1 − X(i, j)) ≥ 1 (26)

∑

i∈M

∑

j∈M

βh(i, j)(1 − X(i, j))

< StateT ransf erCostmax (27)

First six constraints are the same as previous model, a
new constraint (27) is defined to keep maintaining the state
transfer cost at the acceptable level.

4.3 Adaptive trade-off solution between traffic load
and state transfer cost (APO)

In this solution, we try to figure out a trade-off solution
between two objectives: state transfer cost (i.e., F(X, Y )) and
traffic load (i.e., G(X, Y )). These two objectives conflict to
each other, so it’s difficult to find an optimal solution for
both objectives at the same time. Therefore, Pareto optimal
set, including Pareto optimal solutions will be solution
to this kind of multi-objective obtimization problem. A
solution is called Pareto optimal if none of the objective
functions can be improved in value without degrading other
objective values. As depicted in Fig. 4, the Pareto optimal
solutions are the concepts in decision space and become
Pareto optimal front in objective space.

In order to derive the Pareto optimal solutions, we
propose an adaptive Pareto optimal approach (APO) based
on the adaptive weighted sum approach [33]. This approach
can help find more Pareto optimal points on the Pareto
optimal front than normal weighted sum approach. The
APO approach is depicted in Algorithm 1. We define
a function optimizePareto(Flb, Glb, Fub, Gub, w). This
function takes input parameters as upper bounds (i.e.,
Fub, Gub) and lower bounds (i.e., Flb, Glb) of both objective
functions, as well as weight factor w. This function will

solve a multi-objective model using normal weighted sum
method to produce one optimal solution between upper
bounds and lower bounds of two objective functions. Here,
a solution mean a point on Pareto optimal front in objective
space which can be easily converted back to a Pareto
optimal solution in decision space. Because these two
objective functions do not have the same units, so the
normalization is required before applying weight factor. The
multi-objective model needed to solve after normalization
and applying weight factor is presented as follows.

Minimize

w ∗ F(X, Y )−Flb

Fub−Flb

+(1−w)
G(X, Y )−Glb

Gub−Glb

(28)

subjectto

∀i ∈ M, ∀j ∈ M : X(i, j) = X(j, i) (29)

∀i ∈ M, ∀j ∈ M : X(i, j) ∈ [0, 1] (30)

∀i ∈ M, ∀t ∈ M : Y (i, t) ∈ [0, 1] (31)

∀i ∈ M, ∀j ∈ M,

∀t ∈ M : Y (i, t) + Y (j, t) ≤ 1 + X(i, j) (32)

∀i ∈ M :
∑

t∈M

Y(i, t) = 1 (33)

∀i ∈ M, ∀j ∈ M,

∀t ∈ M : |Y (i, t) − Y (j, t)| ≤ 1−X(i, j) (34)∑

i∈M

∑

j∈M

(1 − X(i, j)) ≥ 1 (35)

∑

i∈M

∑

j∈M

βh(i, j)(1 − X(i, j)) < Fub (36)

∀t ∈ M :
∑

i∈M

Y(i, t)ni(Lsig + uiLsession)

< Gub (37)

In Algorithm 1, we first solve two previous single
objective models in Sections 4.1 and 4.2. The output
of these two single objective models are the best and
worst values of both objective functions, denoted as Fbest ,

Gbest , Fworst , Gworst . We obtain initial solutions by calling
the function optimizePareto() with upper and lower
bounds set to Fbest , Gbest , Fworst , Gworst . The weight
factor w runs from 0 to 1 with the uniform step size
1

ninit
. ninit is a number of divisions, initially set to find a

number of initial solutions. The initial solutions are stored
in paretoSetInit . A lot of solutions are overlapped when
the normal weighted sum is used. Therefore, we try to find
more solutions between two initial consecutive solutions
in paretoSetInit . We calculate the number of further
refinements refi for each segment between two consecutive
solutions. The longer segment, the more refinement steps
we should run. The number of refinement steps are
calculated as refi = round(

length(segment)
length(shortestsegment)

) ∗ C

where C is a constant of algorithm, chosen by experiment
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Fig. 4 Pareto optimal solutions

to produce as many as possible the Pareto optimal solutions.
We also limit refi less than 20 to avoid algorithm to run
too long in case of shortestsegment is much shorter than
segment . For each segment, we run again the function
optimizePareto() to find more solutions. The upper and
lower bounds are set to the two endpoints of each segment.
The weight factor w runs from 0 to 1 with the step size
1

refi
. For each feasible model, one Pareto solution will be

obtained.

Algorithm 1 Adaptive Pareto optimal approach (APO)

1: Input:

2: Begin:

3:

4: minimize

5: minimize

6: for 0 1 1 do

7: solve multi-objective model

8: with input

9: if model is feasible then

10: add solution into

11: add solution into

12: end if

13: end for

14: calculate segment length between two consecutive

15: calculate further refinement for each segment

16: for 0 1 1 do

17: for 0 1 1 do

18: solve multi-objective model

19: with input

20: if model is feasible then

21: add point values into

22: end if

23: end for

24: end for

25: Finish

26: Output:

paretoSet

5 Evaluation

5.1 Simulation setup and parameters

In order to evaluate solutions obtained from our proposed
multi-objective model and single objective models, we
developed a simulator program using Python and Gurobi
optimization library [14] for integer linear programming.
The simulations are run on a server which uses Intel(R)
Xeon(R) CPU D-1540 @ 2.00GHz and 64 GB memory.
First, we run the Algorithm 1 to find Pareto optimal front
in the objective space with different scenarios. Second, we
compare solutions obtained from single objective models
(i.e., OST and OTL), normal multi-objective model (i.e., PO
with same weight factors for both objectives), and proposed
adaptive multi-objective model (i.e., APO) in terms of the
following metrics:

– State transfer cost: the cost for state transfer generated
when the UEs handover.

– Maximum traffic load: the maximum traffic load
going to sets of StateMFs among cloud centers.

– The number of StateMF sets: is equivalent to the
number of StateMF sets required to deploy over cloud
centers.

Simulation parameters are assumed like this: the number
of cloud centers and service areas M are set to 10. The
handover frequency h(i, j) between areas i and j are
uniformly distributed between 10 and 100. The average
number of UEs ni in a service area are uniformly distributed
between 100 and 1000. The average number of session
requests ui are uniformly distributed between 1 and 10. The
traffic load on the StateMF due to registration procedure
Lsig and session request procedure Lsession are set to 10.
The initial number of divisions ninit is 10 and the constant
C is set to 10. The unit cost for state transfer β is set to 1
unit. The maximum traffic load T raff icLoadmax and state
transfer cost StateT ransf erCostmax are set to 250000 and
7000, respectively.
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5.2 Pareto optimal selection for multi-objective
model

We run Algorithm 1 to find possible Pareto optimal front
each scenario. For each scenario, the multi-objective model
is solved with the weight factor runnning between [0, 1]
to obtain initial solutions. Then, the refinement process
is executed for each segment between two consecutive
solutions. The multi-objective model continues to be solved
for each segment to find more Pareto optimal solutions.
In the first scenario, we fix the average number of UEs
(i.e., 550) and handover frequency (i.e., 50). We evaluate
the algorithm for the number of session requests among
(2, 4, 6). From Fig. 5a, with the number of requests equal 2
or 4, the most optimal solution can be obtained at w = 0.5
which balances between two design objectives. However,
with the number of requests equal 6, the weight factor
w = 0.5 does not provide the balance between the state

transfer cost and traffic load. The traffic load at w = 0.5
is too high and close to the worst traffic load at w = 1.
The more balance solution is shown in Fig. 5a, which is
obtained by doing more refinements between two initial
solutions at w = 0.4 and w = 0.5. In the second scenario,
we fix the average number of UEs (i.e., 550) and number of
session requests (i.e., 5). We evaluate the algorithm for the
handover frequency among 20, 40, 80. From Pareto optimal
fronts shown in Fig. 5b, we can observe that the best balance
solutions for different handover frequencies are below the
solution at w = 0.5. These solutions can be obtained by
further refinements between two solutions at w = 0.5
and w = 0.4. In the third scenario, we fix the handover
frequency (i.e., 50) and number of session requests (i.e., 5).
We evaluate the algorithm for the number of UEs among
150, 550, 950. From Fig. 5c, we also see that for number of
UEs equal 150, the solution at w = 0.5 can be the most
balanced. For the number fo UEs equal 550, the best balance

Fig. 5 Pareto optimal front for multi-objective model
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solution is below the solution at w = 0.5. The best balance
solution in case of 950 can be at w = 0.6 or w = 0.5.
It is worth mentioning that here the mobile operator can
select a different Pareto solution depending on real values
of state transfer cost and traffic load. Our proposed multi-
objective model can provide the network operators with
the possible solutions to design an optimal network which
balances between two design objectives.

5.3 Performance results

Figures 6, 7, and 8 shows the performance of our proposed
adaptive model (i.e., APO), normal PO (i.e., PO with same
weight factors w = 0.5 ), and two single objective models
(i.e., OST and OTL) when we vary handover frequency,
number of session requests, and number of UEs. Generally,
in all cases, we can see that the OST outperforms two
others in terms of state transfer cost and required number

of StateMF sets due to the OST tries to optimize state
transfer and use as small number of StateMF sets as possible
to reduce state transfer when UEs handover. The OTL is
better than two others in term of traffic load due to the
approach tries to optimize the traffic load on StateMF sets.
The normal PO can achieve the balance between the state
transfer and traffic load in some scenarios. However, in
some other scenarios, it is biased to one side. In most
scenarios, the APO can achieve the balance between the two
design objectives.

From Fig. 6a and b, we can observe that when the
handover frequency increases, the state transfer cost of all
solutions also increase accordingly. The state transfer cost
of OST is still lower than two others due to the objective of
OST is to minimize the state transfer cost. The traffic load
and number of StateMF sets of OST are constant which is
due to the fact that this approach tries to use as small amount
of StateMF sets as possible but still satisfies the maximum

Fig. 6 Performance comparison of proposed solutions as the variation of handover frequency
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traffic load requirement. This traffic load requirement is not
affected by the handover frequency variation. In contrast,
when the handover frequency reaches to a certain point (i.e
75), the traffic load of OTL start increasing which is due
to the fact that the maximum state transfer cost requirement
is affected. It makes the number of StateMF sets decrease
to satisfy the maximum state transfer constraint. We can
see that the normal PO is biased to state transfer cost more
than traffic load in most values of handover frequency. Our
proposed adaptive approach APO offers better balance but
it comes at the expense of higher number of StateMF sets as
shown in Fig. 6c.

From Fig. 7a and b, we observe that when the number of
session requests is less than 4, the normal PO can achieve
the good balance between state transfer cost and traffic
load. However, the number of session requests is greater
than 4, the maximum traffic load constraint is affected,
which results in the increasement of state transfer cost of the

OST. In this scenario, the normal PO is biased to the OST
approach when the number of session requests is less than 6
and biased to the OTL when the number of session requests
is greater than 6. The proposed APO provides better Pareto
optimal solutions in the most of values of number of session
requests compared to the normal PO.

Similarly, Fig. 8 shows that the APO always offers most
balanced solution compared to other solutions in terms of
both state transfer cost and traffic load with the adequate
number of StateMF sets.

5.4 Discussion on real-time deployment

Figure 9 presents the running time of different models
(i.e., OST, OTL, PO, and APO) in log scale. The APO is
more time-comsuming than three other approaches. This
is because of the APO needs to solve the multi-objective
model many times with different weight factors and several

Fig. 7 Performance comparison of proposed solutions as the variation of number of session requests
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Fig. 8 Performance comparison of proposed solutions as the variation of user density

refinements to find all possible Pareto optimal solutions.
As the problem size increases, the running time for the
APO also increases quite a lot. However, in the real life

Fig. 9 Running Time

scenario, the state management functions do not need to
be deployed in a real-time manner. These functions are
normally deployed at the initial stage of network planning.
In addition, we can tune the number of refinements (i.e.,
C and ninit ) which can result in less optimal solutions but
reduce the running time when the real-time deployment is
required.

6 Conclusion

In this paper, we formulate a multi-objective optimization
problem for placing state management functions in service-
based 5G mobile core networks over geo-distributed cloud
infrastructure. Our problem takes into account two objective
functions, including traffic load processed by each set
of state management functions and state transfer cost.
We proposed an adaptive multi-objective approach to this
problem which was proved by simulation that it can provide
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optimal solutions for our problem under various network
conditions. In our future work, we will consider more
constraints into our problem (e.g. latency) to give the best
placement solutions in another use case (e.g., industrial
control) which has strict requirement on network latency.
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